
Training Neural Networks to Predict Graphs.

Who is afraid of the big bad NP-hardness?

Paul Krzakala

Ecole Polytechnique (CMAP) & Télécom Paris (LTCI).

Introduction

1

The infamous ”Graphs are everywhere” slide

Social networks Maps 3D Mesh

Molecules Knowledge Graph

2

Let’s be more precise: the data

• Dataset is made of many graphs (> 10000, can be millions)

• Each graph is small (< 100 nodes, typically)

Ex: molecular datasets...

3

Let’s be more precise: the tasks

Any task where the output is a graph. Ex: graph prediction ...

x PREDICTIVE
MODEL

Input

Prediction
Error

Prediction

Target

krzakala2024any2graph, krzakala2024any2graph, Neurips 2024.

4

Let’s be more precise: the tasks

Any task where the output is a graph. Ex: graph AutoEncoder ...

Reconstruction
Error

ENCODER DECODER

ReconstructionInput

krzakala2025quest, krzakala2025quest, Preprint 2025.

5

Challenges

6

Minor challenge: The size

We need to handle different sizes with fixed model (and in parallel).

Small graphs : it is easy to pick a max size and use padding .

0 1 0

1 0 1

0 1 0


︸ ︷︷ ︸

A

⇐⇒


0 1 0 · ·
1 0 1 · ·
0 1 0 · ·
· · · · ·
· · · · ·

 ,


1

1

1

0

0


︸ ︷︷ ︸

(A,h)

(1)

The new vector h indicates which nodes are real.

7

Minor challenge: architectures

• Many works on graph encoding models x = fθ(A)

• Few works on graph decoding models A = fθ(x)

• Large, unexplored, design space .

High level idea:

Latent

Graph Query

Graph
Self-Attention

Graph
Cross-Attention

L layers

Just need to generalize self/cross attention to graphs.

8

Major challenge: Permutation Invariance

All models should be invariant to node reordering .

2

1

3

1

2

3

In particular, the loss should be invariant:

∀P ∈ σn, L(A,A∗) = L(A,P[A∗]) (2)

where P[A] = PAPT .

9

Major challenge: Permutation Invariance

Theorem

If L(A,A∗) satisfies:

(i) Permutation invariance: ∀P ∈ σn, L(A,A∗) = L(A,P[A∗]),

(ii) Separability: L(A,A∗) = 0 =⇒ ∃P ∈ σn, A = P[A∗],

Then, there exists a base loss L0 such that:

L(A,A∗) = min
P

L0(A,P[A
∗]) (3)

and solving the optimization problem is NP-hard .

Example: L0(A,A
∗) = ||A− A∗||2F .

”Any reasonable loss rewrites as a graph matching problem!”

10

Major challenge: Permutation Invariance

Reconstruction

Target

How Many
Errors ?

11

Major challenge: Permutation Invariance

Reconstruction

Target

Non-Optimal Matching

4 Errors ?
(3 Nodes, 1 Edge)

11

Major challenge: Permutation Invariance

Reconstruction

Target

Optimal Matching

1 Error !

11

Major challenge: Permutation Invariance

Reconstruction

Target

How Many
Errors ?

11

Major challenge: Permutation Invariance

Reconstruction

Target
None !

11

Existing

alternatives

12

Graph Canonization

Main idea:

1. Re-order the nodes in a canonical manner

2. Reframe graph prediction as sequence prediction

Pros: leverage NLP litterature.

Cons:

• If the ordering is not unique, the training is noisy .

• The training is biased (model must ”retro-engineer” the algorithm).

Figure 1: SMILES canonical ordering algorithm.
13

Generative modeling

In deterministic setting, the loss needs to be invariant:

minL(fθ(x), y∗) + ensure that L is invariant (4)

Invariance in a generative model, the distribution needs to be invariant:

max logPθ(y
∗|x) + ensure that Pθ(y |x) is invariant (5)

Easy to achieve! For instance with a permutation equivariant denoiser

gθ:

Y ∼ Pθ ⇐⇒ Y = gθ(Z), Z ∼ Unif (6)

Graph Generative modeling is a hot topic. Limitations:

• Inference can be slow

• Can be hard to train

• Symmetry can be a problem

14

Generative modeling

Curie’s Principle :

An equivariant function can only make the input ”more symmetric”.

Target
Noising

Equivariant
Denoiser

Impossible !

Lawrence, Hannah, et al. ”Improving equivariant networks with

probabilistic symmetry breaking.” 15

Node-Level Models

Any model that rely on local operations (e.g. GNNs).

Note: this is not always an option (e.g. graph prediction).

!

g f

NP
Graph Matching

Graph Reconstruction Loss

Figure 2: Naive graph-level auto-encoder.

16

Node-Level Models

Any model that rely on local operations (e.g. GNNs).

Note: this is not always an option (e.g. graph prediction).

!
g f

Edge Reconstruction Loss

Figure 3: Node-level auto-encoder (+ Aggregation for graph-level embedding).

16

Direct Approach

17

Is it reasonable?

18

Is it reasonable ?

Matching arbitrary graphs is NP, BUT:

• Matching trees is O(log(n)).

• Matching planar graphs is O(n).

• Matching Interval graphs is O(n2).

• Matching graphs of degree k is O(nk).

And many more data distributions!

19

Is it reasonable ?

Similarly, Graph Isomorphism is NP, but in practice...

Figure 4: 1-WL Expressiveness Is (Almost) All You Need, Markus Zopf, 2021.

20

Is it reasonable ?

Data Analysis Matching Solver

MODEL

LOSS

Backprop

Backprop

Dataset

Training Loop

Any2graph: Deep end-to-end supervised graph prediction with an optimal

transport loss, Krzakala et al, Neurips 2024. 21

Is it reasonable ?

Backprop

MODEL

LOSS

Backprop

Backprop

Training Loop

GRALE: The quest for the GRAph Level autoEncoder, Krzakala et al,

Preprint 2025.

22

Relaxation

Graph matching problem:

min
P∈σn

L0(A,A
′,P) (7)

where σn is the set of permutation matrices :

σn = {P ∈ {0, 1}n×n,P1 = PT1 = 1} (8)

We can relax it to the set of doubly stochastic matrices (convex hull):

πn = {T ∈ [0, 1]n×n,T1 = TT1 = 1} (9)

Ex: 0 1 0

1 0 0

0 0 1

 ∈ σ3,

 0 0.9 0.1

0.9 0.1 0

0.1 0 0.9

 ∈ π3 (10)

23

Choice of the relaxation

For P ∈ σn permutation matrix, L0(A,A
′,P) =

||A− PA′PT ||2F = ||AP − PA′||2F =
∑
i,j,k,l

Pi,kPj,ld(Ai,j ,A
′
k,l)

For T ∈ πn matching matrix:

||A− TA′TT ||2F ̸= ||AT − TA′||2F ̸=
∑
i,j,k,l

Ti,kTj,ld(Ai,j ,A
′
k,l)︸ ︷︷ ︸

LGW (A,A′,T)

How to choose the relaxation?

Theorem

LGW is the only relaxation such that

L(A,A′,T) = 0 ⇐⇒ ∃P ∈ σn,A = PA′PT (11)

For a loss function LGW is the good choice.
24

Fused Gromov-Wasserstein

Known as Gromov-Wasserstein loss in Optimal-Transport

[peyre2016gromov].

LGW (A,A′,T) =
∑
i,j,k,l

Ti,kTj,ld(Ai,j ,A
′
k,l) (12)

Interpretation: ”Map i → k and j → l if Ai,j ≈ A′
k,l”

The Fused Gromov-Wasserstein adds node features F ,F ′ ∈ Rn×d

[vayer2020fused]:

LFGW (G ,G ′,T) =
∑
i,k

Ti,kd(Fi ,F
′
k) +

∑
i,j,k,l

Ti,kTj,ld(Ai,j ,A
′
k,l) (13)

Interpretation: ”Map i → k if Fi ≈ F ′
k”

25

Solver choice

26

Solver choice

minT∈σn LFGW (G ,G ′,T) is still NP (non-convex QP).

Conditionnal gradient solver: O(Kn3) where K number of iterations.

Initialization is important!

Example: use the optimal node matching .

T0 = argmin
∑
i,k

Ti,kd(Fi ,F
′
k) +

∑
i,j,k,l

Ti,kTj,ld(Ai,j ,A
′
k,l) (14)

27

Reconstruction

Target

How Many
Errors ?

27

Reconstruction

Target

Optimal Matching

27

Reconstruction

Target

Optimal Matching

1 Error !

27

Reconstruction

Target

Optimal Matching

0 Errors !

28

Reconstruction

Target

Optimal Matching

28

Reconstruction

Target

Non-Optimal Matching

6 Errors ?
(0 Nodes, 6 Edge)

28

Reconstruction

Target

28

Reconstruction

Target

Optimal Matching

28

Reconstruction

Target

Optimal Matching

0 Errors !

28

Feature diffusion

In practice: feature augmentation with message passing .

F̃ = [F ,AF] (15)

Note: similar to 1-step of Weisfeiler-Lehman test.

10 20 30 40 50 60
M

2

3

4

5

6

k(
M

)
With FD
Without FD

Figure 5: Solver iterations (k) vs average graph size (M).

29

Solver Learning

30

Solver Learning

Backprop

MODEL

LOSS

Backprop

Backprop

Training Loop

GRALE: The quest for the GRAph Level autoEncoder, Krzakala et al,

Preprint 2025.

31

Main idea

Parametrize the solver:

T = Mθ(A,A
′) (16)

Must be differentiable !

Then change the ”naive” loss...

min
T∗∈πn

LFGW

(
Aθ(x),A

∗,T ∗)
)

(17)

With the solver-free loss:

LFGW

(
Aθ(x),A

∗,Mθ(Aθ(x),A
∗)
)

(18)

Note: this is an upper bound of the original loss.

32

Main idea

All existing methods that train a solver Mθ are supervised

KL
(
Mθ(A,A

′)||T ∗) where T ∗ = argmin
T∗∈πn

L
(
A,A′,T ∗) (19)

Instead we train it end-to-end without supervision :

LFGW

(
Aθ(x),A

∗,Mθ(Aθ(x),A
∗)
)

(20)

This works because we picked the ”right” relaxation LFGW .

33

Parametrizing the solver

”Mθ(A,A
′) = Feature extraction + Node Matching ”

Mθ(A,A
′) = Sinkhorn(Fθ(A),Fθ(A

′)) (21)

where

Sinkhorn(F,F
′) = argmin

T∈πn

∑
i,k

Ti,kd(Fi ,F
′
k) + ϵH(T) (22)

Sinkhorn is differentiable .

34

Conclusion

35

GRALE

36

GRAph Level autoEncoder (GRALE)

Graph
Vector

Matcher

ENCODER DECODER

Reconstruction Loss

Figure 6: The quest for the GRAph Level autoEncoder (GRALE), Krzakala et

al, Preprint 2025.

37

Application 1: Graph Classification

Graph
VectorENCODER Toxic = FalseCLASSIFIER

Precompute Embeddings Train Classifier

Takeway: Outperforms node-level AutoEncoder + Aggregation .

38

Application 2: Graph Prediction

Graph
Vector DECODERVECTOR

PREDICTION

Give me a
"Caffeine"
molecule

Graph
VectorENCODER

Precompute Embeddings

Train as Regression Test Time

Takeway: SOTA , often by a large margin.

39

Application 3: Graph Matching

ENCODER

ENCODER

MATCHER Distance = 12

Takeway: find better matchings than existing solvers, and faster .

See Mazelet et al. [mazelet2025unsupervised]

40

Application 4: Graph Interpolation

Classical Fréchet Mean is intractable .

At = argmin
A

td(A,A1) + (1− t)d(A,A0) (23)

Lightspeed interpolation in the latent space :

At = f
(
tg(A1) + (1− t)g(A0)

)
(24)

Average

...

...

...

DecodeEncode

Figure 7: Compute the ”average” of 10,000 graphs in seconds with GRALE.

Click here for the animation 41

https://krzakalapaul.github.io/images/GRALE_interpolation.gif

Final remarks

42

Direct approach or alternatives?

Recall the existing alternatives:

i) Graph Canonization + Sequence modeling

→ Very strong baseline (leverages NLP literature)

ii) Node-level models

→ Most data-efficient , but not optimal for graph-level tasks

iii) Generative modeling

→ Promising , hot topic with open questions

The matcher learning is a new tool in the toolbox .

43

Graph matching in Flow models

In presence of symmetry naive interpolation paths are not straight.

Xt = (1− t)X0 + tX1
Xt = (1− t)X0 + t(g · X1)

g = argmin
g∈G

||X0 − g · X1||

For graphs: graph matching problem!

44

Thank you for your attention!

Looking for a postdoc !

Any2Graph Paper GRALE Paper

45

References i

46

