

Training Neural Networks to Predict Graphs.

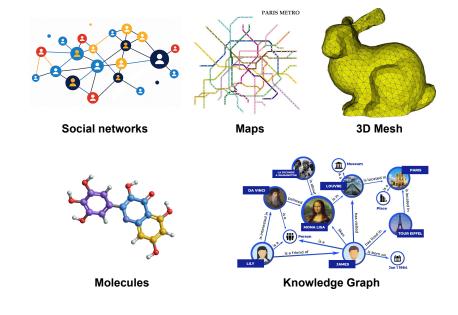
Who is afraid of the big bad NP-hardness?

Paul Krzakala

Ecole Polytechnique (CMAP) & Télécom Paris (LTCI).

Introduction

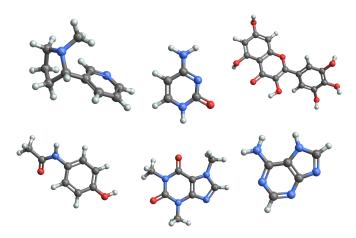
The infamous "Graphs are everywhere" slide



Let's be more precise: the data

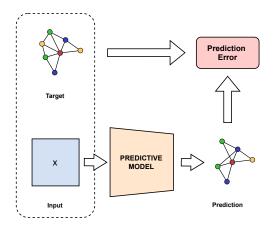
- Dataset is made of many graphs (> 10000, can be millions)
- Each graph is **small** (< 100 nodes, typically)

Ex: molecular datasets...



Let's be more precise: the tasks

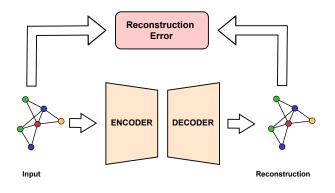
Any task where the **output** is a graph. Ex: **graph prediction** ...



krzakala2024any2graph, krzakala2024any2graph, Neurips 2024.

Let's be more precise: the tasks

Any task where the **output** is a graph. Ex: **graph AutoEncoder** ...



krzakala2025quest, krzakala2025quest, Preprint 2025.

Challenges

Minor challenge: The size

We need to handle different sizes with fixed model (and in parallel).

Small graphs: it is easy to pick a max size and use padding.

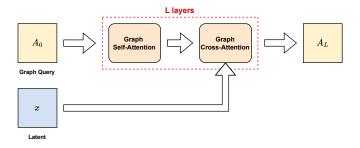
The new vector h indicates which nodes are real.

7

Minor challenge: architectures

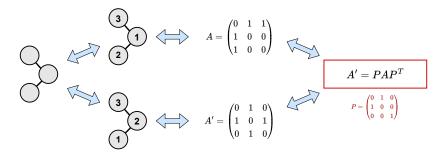
- Many works on graph encoding models $x = f_{\theta}(A)$
- Few works on graph decoding models $A = f_{\theta}(x)$
- Large, unexplored, design space.

High level idea:



Just need to generalize self/cross attention to graphs.

All models should be invariant to node reordering .



In particular, the loss should be invariant:

$$\forall P \in \sigma_n, \quad \mathcal{L}(A, A^*) = \mathcal{L}(A, P[A^*]) \tag{2}$$

where $P[A] = PAP^T$.

9

Theorem

If $\mathcal{L}(A, A^*)$ satisfies:

- (i) Permutation invariance: $\forall P \in \sigma_n$, $\mathcal{L}(A, A^*) = \mathcal{L}(A, P[A^*])$,
- (ii) **Separability:** $\mathcal{L}(A, A^*) = 0 \implies \exists P \in \sigma_n, \quad A = P[A^*],$

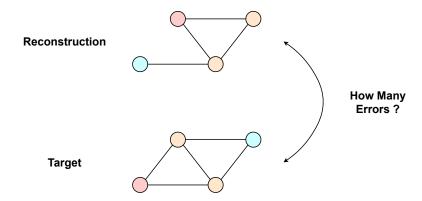
Then, there exists a base loss \mathcal{L}_0 such that:

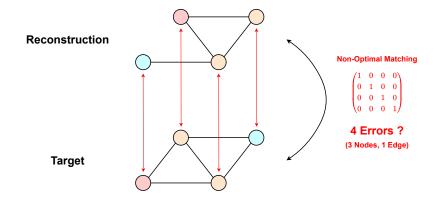
$$\mathcal{L}(A, A^*) = \min_{P} \mathcal{L}_0(A, P[A^*]) \tag{3}$$

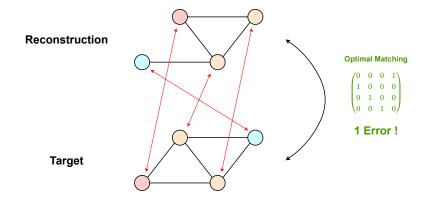
and solving the optimization problem is NP-hard.

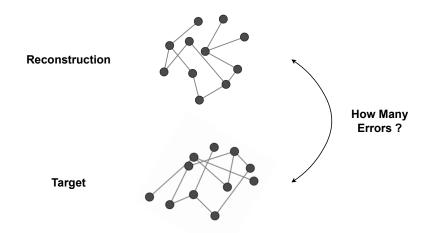
Example: $\mathcal{L}_0(A, A^*) = ||A - A^*||_F^2$.

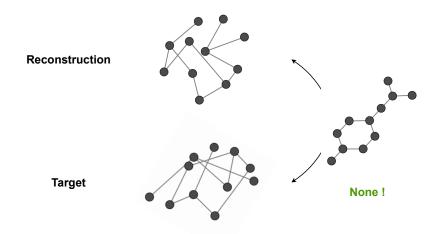
"Any reasonable loss rewrites as a graph matching problem!"











Existing alternatives

Graph Canonization

Main idea:

- 1. Re-order the nodes in a canonical manner
- 2. Reframe graph prediction as sequence prediction

Pros: leverage NLP litterature.

Cons:

- If the ordering is not unique, the training is noisy .
- The training is **biased** (model must "retro-engineer" the algorithm).

Figure 1: SMILES canonical ordering algorithm.

Generative modeling

In deterministic setting, the loss needs to be invariant:

$$\min \mathcal{L}(f_{\theta}(x), y^*)$$
 + ensure that \mathcal{L} is invariant (4)

Invariance in a generative model, the distribution needs to be invariant:

$$\max \log P_{\theta}(y^*|x)$$
 + ensure that $P_{\theta}(y|x)$ is invariant (5)

Easy to achieve! For instance with a **permutation equivariant** denoiser g_{θ} :

$$Y \sim P_{\theta} \iff Y = g_{\theta}(Z), \ Z \sim \text{Unif}$$
 (6)

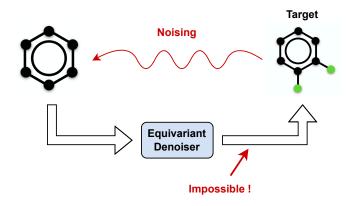
Graph Generative modeling is a hot topic. Limitations:

- Inference can be slow
- Can be hard to train
- Symmetry can be a problem

Generative modeling

Curie's Principle:

An equivariant function can only make the input "more symmetric".



Lawrence, Hannah, et al. "Improving equivariant networks with probabilistic symmetry breaking."

Node-Level Models

Any model that rely on **local operations** (e.g. GNNs).

Note: this is not always an option (e.g. graph prediction).

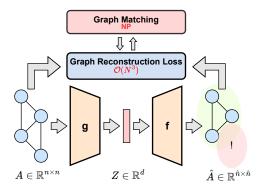


Figure 2: Naive graph-level auto-encoder.

Node-Level Models

Any model that rely on local operations (e.g. GNNs).

Note: this is not always an option (e.g. graph prediction).

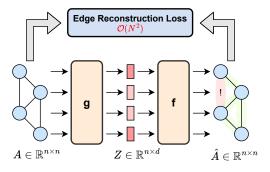


Figure 3: Node-level auto-encoder (+ Aggregation for graph-level embedding).

Direct Approach

Matching arbitrary graphs is NP, BUT:

- Matching trees is $O(\log(n))$.
- Matching **planar graphs** is O(n).
- Matching Interval graphs is $O(n^2)$.
- Matching graphs of degree k is $O(n^k)$.

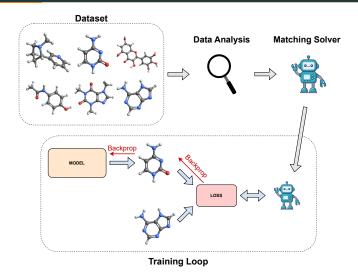
And many more data distributions!

Similarly, **Graph Isomorphism** is NP, but in practice...

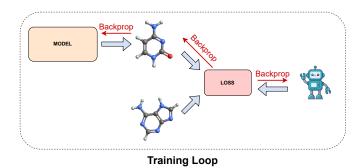
FRACTION OF IDENTIFIABLE GRAPHS FOR k WL ITERATIONS

Dataset	Identifiable Graphs		
	k=1	k=2	k=3
DD	100.00	100.00	100.00
ENZYMES	100.00	100.00	100.00
MUTAG	32.32	92.68	96.34
NCI1	94.18	99.47	100.00
NCI109	94.91	99.40	100.00
PROTEINS	100.00	100.00	100.00
COLLAB	100.00	100.00	100.00
IMDB-B	100.00	100.00	100.00
IMDB-M	100.00	100.00	100.00
REDDIT-B	100.00	100.00	100.00
REDDIT-M-5K	100.00	100.00	100.00

Figure 4: 1-WL Expressiveness Is (Almost) All You Need, Markus Zopf, 2021.



Any2graph: Deep end-to-end supervised graph prediction with an optimal transport loss, Krzakala et al, Neurips 2024.



GRALE: The quest for the GRAph Level autoEncoder, Krzakala et al, Preprint 2025.

Relaxation

Graph matching problem:

$$\min_{P \in \sigma_n} L_0(A, A', P) \tag{7}$$

where σ_n is the set of **permutation matrices** :

$$\sigma_n = \{ P \in \{0, 1\}^{n \times n}, P\mathbf{1} = P^T\mathbf{1} = \mathbf{1} \}$$
 (8)

We can relax it to the set of doubly stochastic matrices (convex hull):

$$\pi_n = \{ T \in [0, 1]^{n \times n}, T\mathbf{1} = T^T\mathbf{1} = \mathbf{1} \}$$
 (9)

Ex:

$$\begin{pmatrix} 0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} \end{pmatrix} \in \sigma_3, \quad \begin{pmatrix} 0 & \mathbf{0.9} & 0.1 \\ \mathbf{0.9} & 0.1 & 0 \\ 0.1 & 0 & \mathbf{0.9} \end{pmatrix} \in \pi_3$$
 (10)

Choice of the relaxation

For $P \in \sigma_n$ permutation matrix, $L_0(A, A', P) =$

$$||A - PA'P^T||_F^2 = ||AP - PA'||_F^2 = \sum_{i,j,k,l} P_{i,k} P_{j,l} d(A_{i,j}, A'_{k,l})$$

For $T \in \pi_n$ matching matrix:

$$||A - TA'T^{T}||_{F}^{2} \neq ||AT - TA'||_{F}^{2} \neq \underbrace{\sum_{i,j,k,l} T_{i,k} T_{j,l} d(A_{i,j}, A'_{k,l})}_{\mathcal{L}_{GW}(A,A',T)}$$

How to choose the relaxation?

Theorem

 \mathcal{L}_{GW} is the only relaxation such that

$$\mathcal{L}(A, A', T) = 0 \iff \exists P \in \sigma_n, A = PA'P^T$$
 (11)

For a loss function \mathcal{L}_{GW} is the good choice.

Fused Gromov-Wasserstein

Known as **Gromov-Wasserstein** loss in Optimal-Transport [peyre2016gromov].

$$\mathcal{L}_{GW}(A, A', T) = \sum_{i,j,k,l} T_{i,k} T_{j,l} d(A_{i,j}, A'_{k,l})$$
(12)

Interpretation: "Map $i \to k$ and $j \to l$ if $A_{i,j} \approx A'_{k,l}$ "

The Fused Gromov-Wasserstein adds node features $F, F' \in \mathbb{R}^{n \times d}$ [vayer2020fused]:

$$\mathcal{L}_{FGW}(G, G', T) = \sum_{i,k} T_{i,k} d(F_i, F'_k) + \sum_{i,j,k,l} T_{i,k} T_{j,l} d(A_{i,j}, A'_{k,l})$$
(13)

Interpretation: "Map $i \to k$ if $F_i \approx F_k''$ "

Solver choice

Solver choice

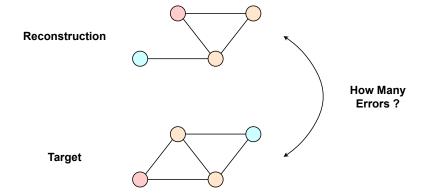
 $\min_{T \in \sigma_n} \mathcal{L}_{FGW}(G, G', T)$ is still NP (non-convex QP).

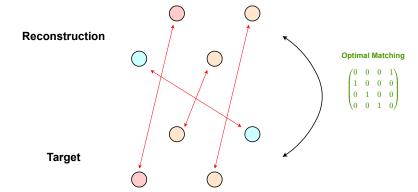
Conditionnal gradient solver: $\mathcal{O}(Kn^3)$ where K number of iterations.

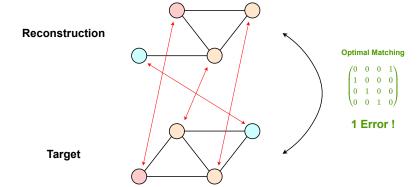
Initialization is important!

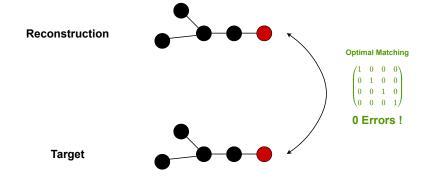
Example: use the **optimal node matching** .

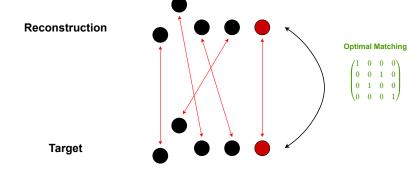
$$T_0 = \arg\min \sum_{i,k} T_{i,k} d(F_i, F'_k) + \sum_{i,j,k,l} T_{i,k} T_{j,l} d(A_{i,j}, A'_{k,l})$$
(14)

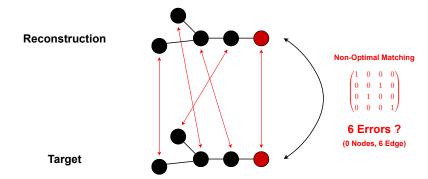


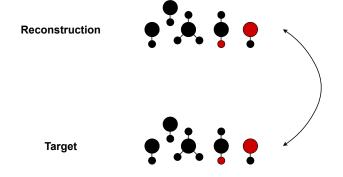


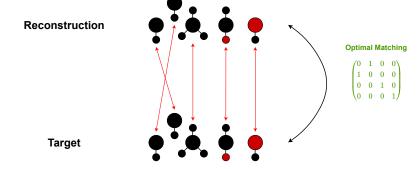


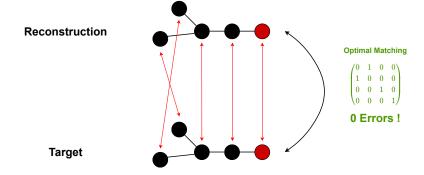












Feature diffusion

In practice: feature augmentation with message passing .

$$\tilde{F} = [F, AF] \tag{15}$$

Note: similar to 1-step of Weisfeiler-Lehman test.

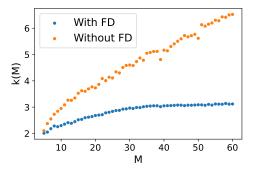
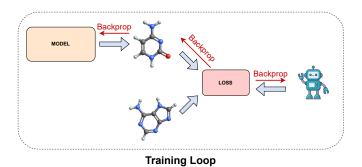


Figure 5: Solver iterations (k) vs average graph size (M).

Solver Learning

Solver Learning



GRALE: The quest for the GRAph Level autoEncoder, Krzakala et al, Preprint 2025.

Main idea

Parametrize the solver:

$$T = M_{\theta}(A, A') \tag{16}$$

Must be differentiable!

Then change the "naive" loss...

$$\min_{T^* \in \pi_n} \mathcal{L}_{FGW}(A_{\theta}(x), A^*, T^*)) \tag{17}$$

With the solver-free loss:

$$\mathcal{L}_{FGW}(A_{\theta}(x), A^*, M_{\theta}(A_{\theta}(x), A^*))$$
(18)

Note: this is an **upper bound** of the original loss.

Main idea

All existing methods that train a solver M_{θ} are supervised

$$KL(M_{\theta}(A, A')||T^*)$$
 where $T^* = \underset{T^* \in \pi_n}{\arg\min} \mathcal{L}(A, A', T^*)$ (19)

Instead we train it end-to-end without supervision :

$$\mathcal{L}_{FGW}(A_{\theta}(x), A^*, M_{\theta}(A_{\theta}(x), A^*))$$
 (20)

This works because we picked the "right" relaxation \mathcal{L}_{FGW} .

Parametrizing the solver

"
$$M_{\theta}(A, A') =$$
 Feature extraction + Node Matching"

$$M_{\theta}(A, A') = \mathsf{Sinkhorn}(F_{\theta}(A), F_{\theta}(A')) \tag{21}$$

where

Sinkhorn
$$(F,F') = \underset{T \in \pi_n}{\operatorname{arg min}} \sum_{i,k} T_{i,k} d(F_i,F'_k) + \epsilon H(T)$$
 (22)

Sinkhorn is differentiable.

Conclusion

GRALE

GRAph Level autoEncoder (GRALE)

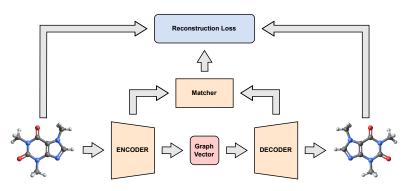
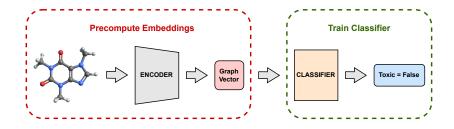


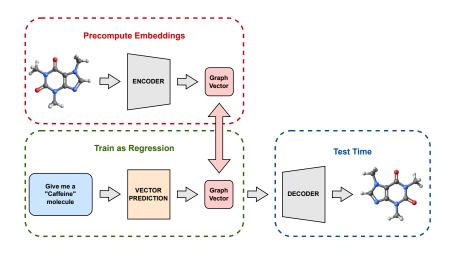
Figure 6: The quest for the GRAph Level autoEncoder (GRALE), Krzakala et al, Preprint 2025.

Application 1: Graph Classification



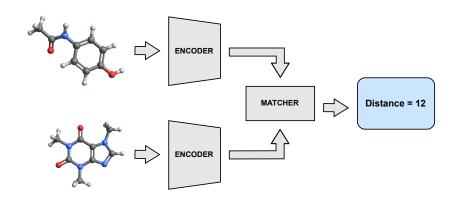
Takeway: Outperforms **node-level AutoEncoder** + **Aggregation** .

Application 2: Graph Prediction



Takeway: SOTA, often by a large margin.

Application 3: Graph Matching



Takeway: find better matchings than existing solvers, and faster .

See Mazelet et al. [mazelet2025unsupervised]

Application 4: Graph Interpolation

Classical Fréchet Mean is intractable.

$$A_t = \underset{A}{\text{arg min}} \ td(A, A_1) + (1 - t)d(A, A_0)$$
 (23)

Lightspeed interpolation in the latent space :

$$A_t = f(tg(A_1) + (1-t)g(A_0))$$
(24)

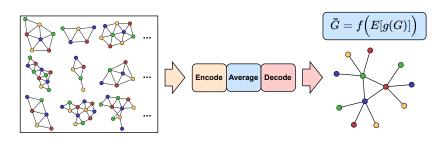


Figure 7: Compute the "average" of 10,000 graphs in seconds with GRALE.

Final remarks

Direct approach or alternatives?

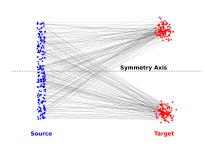
Recall the existing alternatives:

- i) Graph Canonization + Sequence modeling
 - → Very strong baseline (leverages NLP literature)
- ii) Node-level models
 - \rightarrow Most data-efficient, but not optimal for graph-level tasks
- iii) Generative modeling
 - ightarrow **Promising** , hot topic with open questions

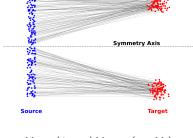
The matcher learning is a **new tool in the toolbox** .

Graph matching in Flow models

In presence of symmetry naive interpolation paths are not straight.



$$X_t = (1-t)X_0 + tX_1$$



$$X_t = (1 - t)X_0 + t(g \cdot X_1)$$
$$g = \underset{g \in G}{\arg\min} ||X_0 - g \cdot X_1||$$

For graphs: graph matching problem!

Thank you for your attention!

Looking for a postdoc!

Any2Graph Paper

GRALE Paper

References i