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Supervised Graph Prediction
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A (very) naive approach

Goal: from input x ∈ X learn to predict graph g ∈ g.

Naive approach: Represent graph g by adjacency matrix A ∈ [0, 1]m×m

Minimize:

min
θ

1
n

n∑
k=1

||fθ(xk)− Ak||22

With some neural net.
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Graph Prediction: challenges
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Our framework needs to be graph isomorphism invariant!
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Graph Prediction: challenges
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Our framework needs to deal with graphs of arbitrary sizes!
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Our framework
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Graph Representation



Starting point

Classical representation of graph of size m with features of
dimension d:
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Padding

We pad all graph to have same size M:
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Pipeline

Example for M = 3:

Target Graph
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Pipeline

Example for M = 3:

Adjacency
Matrix
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Pipeline

Example for M = 3:

Padding
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Pipeline

Example for M = 3:

Input
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Pipeline

Example for M = 3:
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Pipeline

Example for M = 3:
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Pipeline

Example for M = 3:

Our loss

Tresholding
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Pipeline

Example for M = 3:

Our loss

Tresholding
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Pipeline

Example for M = 3:

Our loss

Tresholding

Prediction

Discrete Loss
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PMFGW Loss



Designing a loss:

We need a loss L(ŷ, y) to compare predicted triplet ŷ = (ĥ, F̂, Â) and
target triplet y = (h, F,A).

Requirements:
• Differentiable
• Permutation Invariant
• Efficient computation
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OT at the rescue! A brief history.

• Mémoli introduce Gromov-Wasserstein (GW) distance to
compare mm-spaces [1]

min
π∈Π(µX ,µY )

∫
X×Y

∫
X×Y

ℓ(dX (x, x′),dY(y, y′)) dπ(x, y) dπ(x′, y′)

where Π(µX , µY) is the set of transport plan

Π(µX , µY) = {π ∈ P(X × Y) | πX = µX , πY = µY}
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OT at the rescue! A brief history.

• Mémoli introduce Gromov-Wasserstein (GW) distance to
compare mm-spaces [1]

• Peyré et al. applied GW to compare graphs. [2]

min
T∈πn,m

n∑
i,j=1

m∑
k,l=1

Ti,kTj,lℓ(Âi,j,Ak,l)

where πn,m is the set of discrete transport plan

πn,m = {T ∈ [0, 1]n×m |
∑
i

Ti,j =
∑
j

Ti,j = 1}
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OT at the rescue! A brief history.

• Mémoli introduce Gromov-Wasserstein (GW) distance to
compare mm-spaces [1]

• Peyré et al. applied GW to compare graphs. [2]
• Vayer et al. introduce FGW to compare labeled graphs [3]

min
T∈πn,m

n∑
i=1

m∑
k=1

Ti,kℓF(F̂i, Fk) +
n∑

i,j=1

m∑
k,l=1

Ti,kTj,lℓA(Âi,j,Ak,l)

where πn,m is the set of discrete transport plan

πn,m = {T ∈ [0, 1]n×m |
∑
i

Ti,j =
∑
j

Ti,j = 1}
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OT at the rescue! A brief history.

• Mémoli introduce Gromov-Wasserstein (GW) distance to
compare mm-spaces [1]

• Peyré et al. applied GW to compare graphs. [2]
• Vayer et al. introduce FGW to compare labeled graphs [3]
• Our work introduce the PMFGW to compare predicted triplet
(ĥ, F̂, Â) and padded target (h, F,A)

min
T∈πM

M∑
i,k=1

Ti,kℓh(ĥi,hk) +
M∑

i,k=1

Ti,kℓF(F̂i, Fk)hi +
M∑

i,j,k,l=1

Ti,kTj,lℓA(Âi,j,Ak,l)hihj

πM = {T ∈ [0, 1]M×M |
∑
i

Ti,j =
∑
j

Ti,j = 1}
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Architecture



Architecture
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• The encoder extract a set of features x→ (V1, ..., Vk) ∈ Rk×d

• The transformer translate them into M nodes embedding
(Z1, ..., ZM) →∈ RM×d

• The decoder produce the graph following

ĥi = σ(MLPm(zi)) ∀i ∈ {1, . . . ,M}
F̂i = MLPf(zi) ∀i ∈ {1, . . . ,M}
Âi,j = σ(MLPs(zi + zj)) ∀i, j ∈ {1, . . . ,M}2
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Architecture
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Philosophy of the encoder
• Architecture adapts to input modality
• Can leverage pretrained models
• Must extract a list of features. Avoid vector bottleneck.
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Encoder (text input)

Self-Attention
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Figure 1: Caption
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Encoder (graph input)

Graph Neural Network
(GNN)
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Figure 2: Caption

16



Encoder (image input)
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Figure 3: Caption
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Applying the framework



Prediction performances

Figure 4: Qualitative comparison of
Any2Graph (ours) and Relationformer.

DATASETS MODEL EDIT DISTANCE ↓

COLORING
FGWBARY-NN∗ 6.73
RELATIONFORMER 5.47
ANY2GRAPH (OURS) 0.20

TOULOUSE FGWBARY-NN∗ 8.11
RELATIONFORMER 0.13
ANY2GRAPH (OURS) 0.13

USCITIES RELATIONFORMER 2.09
ANY2GRAPH (OURS) 1.86

QM9
FGWBARY-ILE∗ 2.84
RELATIONFORMER 3.80
ANY2GRAPH (OURS) 2.13

GDB13 RELATIONFORMER 8.83
ANY2GRAPH (OURS) 3.63

Table 1: Prediction performances
measured with (test) edit distance.
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Training Dynamics

→ 100K samples 19



... after 5 epochs

Number of nodes Nodes features 20



... after 100 epochs

Number of nodes Nodes features Structure 21



Decomposing the loss
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A more challenging case

For some datasets (e.g. molecules) the prediction of nodes poorly
guides the prediction of the structure:

And hundreds
more !

And the good dynamic does not occur.
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Feature Diffusion trick

We ask the model to predict the features of a nodes + the features of
its neighbors, formally:

F 7→ [F,AF]
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Effect of Feature Diffusion
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Figure 5: Without Feature Diffusion.
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Figure 6: With Feature Diffusion.

Feature diffusion also helps the OT solver converge faster!
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Thank you for your softmax(QKT)V !

Figure 7: Any2Graph performing an Img2Graph task.
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Effect the hyperparameters: M

M is the maximum number of nodes the model can use.
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Figure 8: Effect of M.
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Effect the hyperparameters: α

α = [αh, αF, αA] are the weights balancing the terms of the loss.

h = 1

F = 1

A = 1

0 1 2 3 4

Figure 9: Effect of α on the performances (grid search on the simplex).
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Effect the hyperparameters: α

Setting αA too high prevents the good dynamic!
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Figure 10: α = [10, 1, 1].
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Figure 11: α = [1, 1, 1].
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A toy example

A target graph , g = (F,A) where

F =
(
f1
f2

)
;A =

(
0 1
1 0

)

For a = h = 1 the prediction is perfect L(ŷ1,1,P3(g)) = 0

ĥ =

11
0

 ; F̂ =

f1f2
f2

 ; Â =

0 1 0
1 0 0
0 0 0


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A toy example

A target graph , g = (F,A) where

F =
(
f1
f2

)
;A =

(
0 1
1 0

)

For a = h = 0 the prediction is perfect L(ŷ0,0,P(g)) = 0

ĥ =

10
1

 ; F̂ =

f1f2
f2

 ; Â =

0 0 1
0 0 0
1 0 0


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A toy example

We can plot the loss landscape
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Figure 12: ℓ(a,h) = L(ŷa,h,P(g))
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Figure 13: ℓ(a,h) = ED(P−1(ŷa,h), g)
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Computing the loss

Recall the expression of the loss:

min
T∈πM

M∑
i,k=1

Ti,kLh(ĥi,hk)+
M∑

i,k=1

Ti,kLF(F̂i, Fk)hk+
M∑

i,j,k,l=1

Ti,kTj,lLA(Âi,j,Ak,l)hkhl

The inner optimization problem writes

min
T∈πM

〈T,U〉+ 〈T, L⊗ T〉

For Ui,k = ℓh(ĥi,hk) + ℓF(̂fi, fk)hk
and (L⊗ T)i,k =

∑
j,l Tj,lℓA(Âi,j,Ak,l)hkhl

33



Computing the loss

Conditionnal Gradient solver:

T(k+1) = min
T∈πM

〈T,C(k)〉

• Each step is a standard OT problem!
• With cost C(k) = U+ L⊗ T(k)

• We provide a factorisation for fast computation of L⊗ T(k)
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