

Any2Graph: End-To-End Supervised Graph Prediction With An Optimal Transport Loss

Paul KRZAKALA, LTCI (Télécom Paris) & CMAP (Polytechnique) &

J. Yang

R. Flamary

F. d'Alché-Buc

C. Laclau

M. Labeau

Supervised Graph Prediction

Goal: from input $x \in \mathcal{X}$ learn to predict graph $g \in \mathbf{g}$. **Naive approach:** Represent graph g by adjacency matrix $A \in [0, 1]^{m \times m}$ Minimize:

$$\min_{\theta} \frac{1}{n} \sum_{k=1}^{n} ||f_{\theta}(x_k) - A_k||_2^2$$

With some neural net.

Graph Prediction: challenges

Our framework needs to be graph isomorphism invariant!

Graph Prediction: challenges

Our framework needs to deal with graphs of arbitrary sizes!

Graph Representation

Classical representation of graph of size *m* with features of dimension *d*:

We pad all graph to have same size M:

Example for M = 3:

Example for M = 3:

Example for M = 3:

Example for M = 3:

Input

х

Example for M = 3:

$$\begin{array}{ccc} & \hat{\mathbf{h}} & \hat{\mathbf{A}} \\ \mathbf{x} & & \underbrace{f_{\theta}} & & \begin{pmatrix} 0.8 \\ 0.9 \\ 0.1 \end{pmatrix} \begin{pmatrix} 0 & 0.9 & 0.1 \\ 0.9 & 0 & 0.1 \\ 0.2 & 0.1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1\\1\\0 \end{pmatrix} \begin{pmatrix} 0 & 1 & -\\1 & 0 & -\\- & - & - \end{pmatrix} \longleftarrow \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \longleftarrow \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix}$$

Example for M = 3:

Example for M = 3:

Example for M = 3:

Example for M = 3:

PMFGW Loss

We need a loss $\mathcal{L}(\hat{y}, y)$ to compare predicted triplet $\hat{y} = (\hat{h}, \hat{F}, \hat{A})$ and target triplet y = (h, F, A).

Requirements:

- Differentiable
- Permutation Invariant
- Efficient computation

 Mémoli introduce Gromov-Wasserstein (GW) distance to compare mm-spaces [1]

$$\min_{\pi \in \Pi(\mu_{\mathcal{X}}, \mu_{\mathcal{Y}})} \int_{\mathcal{X} \times \mathcal{Y}} \int_{\mathcal{X} \times \mathcal{Y}} \ell(d_{\mathcal{X}}(x, x'), d_{\mathcal{Y}}(y, y')) \, \mathrm{d}\pi(x, y) \, \mathrm{d}\pi(x', y')$$

where $\Pi(\mu_{\mathcal{X}}, \mu_{\mathcal{Y}})$ is the set of transport plan

$$\Pi(\mu_{\mathcal{X}},\mu_{\mathcal{Y}}) = \{\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \mid \pi_{\mathcal{X}} = \mu_{\mathcal{X}}, \pi_{\mathcal{Y}} = \mu_{\mathcal{Y}}\}$$

OT at the rescue! A brief history.

- Mémoli introduce Gromov-Wasserstein (GW) distance to compare mm-spaces [1]
- Peyré et al. applied GW to compare graphs. [2]

$$\min_{\mathsf{T}\in\pi_{n,m}}\sum_{i,j=1}^{n}\sum_{k,l=1}^{m}T_{i,k}T_{j,l}\ell(\hat{\mathsf{A}}_{i,j},\mathsf{A}_{k,l})$$

where $\pi_{n,m}$ is the set of discrete transport plan

$$\pi_{n,m} = \{ \mathbf{T} \in [0,1]^{n \times m} \mid \sum_{i} T_{i,j} = \sum_{j} T_{i,j} = 1 \}$$

OT at the rescue! A brief history.

- Mémoli introduce Gromov-Wasserstein (GW) distance to compare mm-spaces [1]
- Peyré et al. applied GW to compare graphs. [2]
- Vayer et al. introduce FGW to compare labeled graphs [3]

$$\min_{\mathsf{T}\in\pi_{n,m}}\sum_{i=1}^{n}\sum_{k=1}^{m}T_{i,k}\ell_{\mathsf{F}}(\hat{F}_{i},F_{k})+\sum_{i,j=1}^{n}\sum_{k,l=1}^{m}T_{i,k}T_{j,l}\ell_{\mathsf{A}}(\hat{A}_{i,j},A_{k,l})$$

where $\pi_{n,m}$ is the set of discrete transport plan

$$\pi_{n,m} = \{ \mathbf{T} \in [0,1]^{n \times m} \mid \sum_{i} T_{i,j} = \sum_{j} T_{i,j} = 1 \}$$

OT at the rescue! A brief history.

- Mémoli introduce Gromov-Wasserstein (GW) distance to compare mm-spaces [1]
- Peyré et al. applied GW to compare graphs. [2]
- Vayer et al. introduce FGW to compare labeled graphs [3]
- Our work introduce the PMFGW to compare predicted triplet $(\hat{h}, \hat{F}, \hat{A})$ and padded target (h, F, A)

$$\min_{\mathbf{T}\in\pi_{M}}\sum_{i,k=1}^{M}T_{i,k}\ell_{h}(\hat{h}_{i},h_{k}) + \sum_{i,k=1}^{M}T_{i,k}\ell_{F}(\hat{F}_{i},F_{k})h_{i} + \sum_{i,j,k,l=1}^{M}T_{i,k}T_{j,l}\ell_{A}(\hat{A}_{i,j},A_{k,l})h_{i}h_{j}$$

$$\pi_{\mathsf{M}} = \{\mathsf{T} \in [0, 1]^{\mathsf{M} \times \mathsf{M}} \mid \sum_{i} T_{i,j} = \sum_{j} T_{i,j} = 1\}$$

Architecture

- The encoder extract a set of features $x \rightarrow (V_1, ..., V_k) \in \mathbb{R}^{k \times d}$
- The transformer translate them into M nodes embedding $(Z_1,...,Z_M) \to \in \mathbb{R}^{M \times d}$
- The decoder produce the graph following

$$\begin{split} \hat{h}_i &= \sigma(\text{MLP}_m(\mathbf{z}_i)) & \forall i \in \{1, \dots, M\} \\ \hat{F}_i &= \text{MLP}_f(\mathbf{z}_i) & \forall i \in \{1, \dots, M\} \\ \hat{A}_{i,j} &= \sigma(\text{MLP}_s(\mathbf{z}_i + \mathbf{z}_j)) & \forall i, j \in \{1, \dots, M\}^2 \end{split}$$

Philosophy of the encoder

- Architecture adapts to input modality
- Can leverage pretrained models
- Must extract a list of features. Avoid vector bottleneck.

Encoder (text input)

Encoder (graph input)

Encoder (image input)

Applying the framework

Prediction performances

Figure 4: Qualitative comparison of Any2Graph (ours) and Relationformer.

DATASETS	MODEL	Edit Distance \downarrow
Coloring	FGWBARY-NN* Relationformer	6.73 5.47
	ANY2GRAPH (OURS)	0.20
Toulouse	FGWBARY-NN* Relationformer Any2Graph (Ours)	8.11 0.13 0.13
USCITIES	Relationformer Any2Graph (Ours)	2.09 1.86
QM9	FGWBARY-ILE* Relationformer Any2Graph (Ours)	2.84 3.80 2.13
GDB13	Relationformer Any2Graph (Ours)	8.83 3.63

Table 1: Prediction performancesmeasured with (test) edit distance.

Training Dynamics

... after 5 epochs

Number of nodes \checkmark Nodes features \checkmark

... after 100 epochs

Number of nodes \checkmark Nodes features \checkmark Structure \checkmark

Decomposing the loss

For some datasets (e.g. molecules) the prediction of nodes poorly guides the prediction of the structure:

And the good dynamic does not occur.

Feature Diffusion trick

We ask the model to predict the features of a nodes + the features of its neighbors, formally:

Effect of Feature Diffusion

Figure 5: Without Feature Diffusion.

Figure 6: With Feature Diffusion.

Feature diffusion also helps the OT solver converge faster!

Thank you for your **softmax** $(QK^T)V!$

Figure 7: Any2Graph performing an Img2Graph task.

M is the maximum number of nodes the model can use.

Figure 8: Effect of M.

Effect the hyperparameters: lpha

 $\alpha = [\alpha_h, \alpha_F, \alpha_A]$ are the weights balancing the terms of the loss.

Figure 9: Effect of α on the performances (grid search on the simplex).

Setting α_A too high prevents the good dynamic!

Figure 10: $\alpha = [10, 1, 1]$.

Figure 11: $\alpha = [1, 1, 1]$.

A target graph , g = (F, A) where

$$\mathbf{F} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix}$$
; $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

For a = h = 1 the prediction is perfect $\mathcal{L}(\hat{y}_{1,1}, \mathcal{P}_3(g)) = 0$

$$\hat{\mathbf{h}} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}; \hat{\mathbf{F}} = \begin{pmatrix} \mathbf{f}_1\\\mathbf{f}_2\\\mathbf{f}_2 \end{pmatrix}; \hat{\mathbf{A}} = \begin{pmatrix} 0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 0 \end{pmatrix}$$

A target graph , g = (F, A) where

$$\mathbf{F} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix}$$
; $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

For a = h = 0 the prediction is perfect $\mathcal{L}(\hat{y}_{0,0}, \mathcal{P}(g)) = 0$

$$\hat{\mathbf{h}} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}; \hat{\mathbf{F}} = \begin{pmatrix} \mathbf{f}_1\\\mathbf{f}_2\\\mathbf{f}_2 \end{pmatrix}; \hat{\mathbf{A}} = \begin{pmatrix} 0 & 0 & 1\\0 & 0 & 0\\1 & 0 & 0 \end{pmatrix}$$

We can plot the loss landscape

Figure 12: $\ell(a, h) = \mathcal{L}(\hat{y}_{a,h}, \mathcal{P}(g))$

Figure 13: $\ell(a, h) = ED(\mathcal{P}^{-1}(\hat{y}_{a,h}), g)$

Recall the expression of the loss:

$$\min_{T \in \pi_M} \sum_{i,k=1}^{M} T_{i,k} \mathcal{L}_h(\hat{h}_i, h_k) + \sum_{i,k=1}^{M} T_{i,k} \mathcal{L}_F(\hat{F}_i, F_k) h_k + \sum_{i,j,k,l=1}^{M} T_{i,k} T_{j,l} \mathcal{L}_A(\hat{A}_{i,j}, A_{k,l}) h_k h_l$$

The inner optimization problem writes

$$\min_{\mathsf{T}\in\pi_{M}}\langle\mathsf{T},\mathsf{U}\rangle+\langle\mathsf{T},\mathsf{L}\otimes\mathsf{T}\rangle$$

For
$$\mathbf{U}_{i,k} = \ell_h(\hat{h}_i, h_k) + \ell_F(\hat{f}_i, f_k)h_k$$

and $(\mathbf{L} \otimes \mathbf{T})_{i,k} = \sum_{j,l} T_{j,l}\ell_A(\hat{A}_{i,j}, A_{k,l})h_kh_l$

Conditionnal Gradient solver:

$$\mathsf{T}^{(k+1)} = \min_{\mathsf{T} \in \pi_{\mathsf{M}}} \langle \mathsf{T}, \mathsf{C}^{(k)} \rangle$$

- Each step is a standard OT problem!
- With cost $C^{(k)} = U + L \otimes T^{(k)}$
- We provide a factorisation for fast computation of $L\otimes T^{(k)}$