
Any2Graph: End-To-End Supervised Graph
Prediction With An Optimal Transport Loss

Paul KRZAKALA, LTCI (Télécom Paris) & CMAP (Polytechnique)

&

J. Yang R. Flamary F. d’Alché-Buc C. Laclau M. Labeau

Supervised Graph Prediction

Graphs as output

Graph
Classification

Link
Prediction

Node
Classification

Or

Or

Graph Input

Images

Text

Graph

Or

Or

Graph Output

Graph Neural Network
(GNN)

1

A (very) naive approach

Goal: from input x ∈ X learn to predict graph g ∈ g.

Naive approach: Represent graph g by adjacency matrix A ∈ [0, 1]m×m

Minimize:

min
θ

1
n

n∑
k=1

||fθ(xk)− Ak||22

With some neural net.

2

Graph Prediction: challenges

1
2

3

2
1

3

Our framework needs to be graph isomorphism invariant!

3

Graph Prediction: challenges

2
1

3

3
2

1

3
4

Our framework needs to deal with graphs of arbitrary sizes!

4

Our framework

Any2Graph

Images

Text

Graph

Or

Or

Graph Output

Graph
Representation Loss Architecture

5

Graph Representation

Starting point

Classical representation of graph of size m with features of
dimension d:

6

Padding

We pad all graph to have same size M:

7

Pipeline

Example for M = 3:

Target Graph

8

Pipeline

Example for M = 3:

Adjacency
Matrix

8

Pipeline

Example for M = 3:

Padding

8

Pipeline

Example for M = 3:

Input

8

Pipeline

Example for M = 3:

8

Pipeline

Example for M = 3:

8

Pipeline

Example for M = 3:

Our loss

Tresholding

8

Pipeline

Example for M = 3:

Our loss

Tresholding

Prediction

8

Pipeline

Example for M = 3:

Our loss

Tresholding

Prediction

Discrete Loss

8

PMFGW Loss

Designing a loss:

We need a loss L(ŷ, y) to compare predicted triplet ŷ = (ĥ, F̂, Â) and
target triplet y = (h, F,A).

Requirements:
• Differentiable
• Permutation Invariant
• Efficient computation

9

OT at the rescue! A brief history.

• Mémoli introduce Gromov-Wasserstein (GW) distance to
compare mm-spaces [1]

min
π∈Π(µX ,µY)

∫
X×Y

∫
X×Y

ℓ(dX (x, x′),dY(y, y′)) dπ(x, y) dπ(x′, y′)

where Π(µX , µY) is the set of transport plan

Π(µX , µY) = {π ∈ P(X × Y) | πX = µX , πY = µY}

10

OT at the rescue! A brief history.

• Mémoli introduce Gromov-Wasserstein (GW) distance to
compare mm-spaces [1]

• Peyré et al. applied GW to compare graphs. [2]

min
T∈πn,m

n∑
i,j=1

m∑
k,l=1

Ti,kTj,lℓ(Âi,j,Ak,l)

where πn,m is the set of discrete transport plan

πn,m = {T ∈ [0, 1]n×m |
∑
i

Ti,j =
∑
j

Ti,j = 1}

11

OT at the rescue! A brief history.

• Mémoli introduce Gromov-Wasserstein (GW) distance to
compare mm-spaces [1]

• Peyré et al. applied GW to compare graphs. [2]
• Vayer et al. introduce FGW to compare labeled graphs [3]

min
T∈πn,m

n∑
i=1

m∑
k=1

Ti,kℓF(F̂i, Fk) +
n∑

i,j=1

m∑
k,l=1

Ti,kTj,lℓA(Âi,j,Ak,l)

where πn,m is the set of discrete transport plan

πn,m = {T ∈ [0, 1]n×m |
∑
i

Ti,j =
∑
j

Ti,j = 1}

12

OT at the rescue! A brief history.

• Mémoli introduce Gromov-Wasserstein (GW) distance to
compare mm-spaces [1]

• Peyré et al. applied GW to compare graphs. [2]
• Vayer et al. introduce FGW to compare labeled graphs [3]
• Our work introduce the PMFGW to compare predicted triplet
(ĥ, F̂, Â) and padded target (h, F,A)

min
T∈πM

M∑
i,k=1

Ti,kℓh(ĥi,hk) +
M∑

i,k=1

Ti,kℓF(F̂i, Fk)hi +
M∑

i,j,k,l=1

Ti,kTj,lℓA(Âi,j,Ak,l)hihj

πM = {T ∈ [0, 1]M×M |
∑
i

Ti,j =
∑
j

Ti,j = 1}

13

Architecture

Architecture

Input Set Of Features Nodes Embeddings

ENCODER TRANSFORMER GRAPH DECODER

Input data
dependent

MLP

MLP

PM-FGW Loss

Prediction Padded Target

TRANSFORMER
ENCODER

TRANSFORMER
DECODER

Nodes queries

MLP

0
1
1
1

• The encoder extract a set of features x→ (V1, ..., Vk) ∈ Rk×d

• The transformer translate them into M nodes embedding
(Z1, ..., ZM) →∈ RM×d

• The decoder produce the graph following

ĥi = σ(MLPm(zi)) ∀i ∈ {1, . . . ,M}
F̂i = MLPf(zi) ∀i ∈ {1, . . . ,M}
Âi,j = σ(MLPs(zi + zj)) ∀i, j ∈ {1, . . . ,M}2

14

Architecture

Input Set Of Features Nodes Embeddings

ENCODER TRANSFORMER GRAPH DECODER

Input data
dependent

MLP

MLP

PM-FGW Loss

Prediction Padded Target

TRANSFORMER
ENCODER

TRANSFORMER
DECODER

Nodes queries

MLP

0
1
1
1

Philosophy of the encoder
• Architecture adapts to input modality
• Can leverage pretrained models
• Must extract a list of features. Avoid vector bottleneck.

14

Encoder (text input)

Self-Attention

Input (Text) Set Of Features

A

Piece

Of

Text

Self-Attention

Set Of Features

A

Piece

Of

Text

But

Longer

Input (Text)

Figure 1: Caption

15

Encoder (graph input)

Graph Neural Network
(GNN)

Input (graph) Set of Features

Graph Neural Network
(GNN)

Input (graph) Set of Features

Figure 2: Caption

16

Encoder (image input)

Convolutionnal
Neural Network

(CNN)

Input (Image) Set Of Features

Convolutionnal
Neural Network

(CNN)

Input (Image) Set Of Features

Figure 3: Caption

17

Applying the framework

Prediction performances

Figure 4: Qualitative comparison of
Any2Graph (ours) and Relationformer.

DATASETS MODEL EDIT DISTANCE ↓

COLORING
FGWBARY-NN∗ 6.73
RELATIONFORMER 5.47
ANY2GRAPH (OURS) 0.20

TOULOUSE FGWBARY-NN∗ 8.11
RELATIONFORMER 0.13
ANY2GRAPH (OURS) 0.13

USCITIES RELATIONFORMER 2.09
ANY2GRAPH (OURS) 1.86

QM9
FGWBARY-ILE∗ 2.84
RELATIONFORMER 3.80
ANY2GRAPH (OURS) 2.13

GDB13 RELATIONFORMER 8.83
ANY2GRAPH (OURS) 3.63

Table 1: Prediction performances
measured with (test) edit distance.

18

Training Dynamics

→ 100K samples 19

... after 5 epochs

Number of nodes Nodes features 20

... after 100 epochs

Number of nodes Nodes features Structure 21

Decomposing the loss

0 1 2 3 4 5 6 7 8 9 10
Epochs

0.0

0.5

1.0

Lo
ss

es
 (t

es
t s

et
)

loss features
loss mask
loss structure

22

A more challenging case

For some datasets (e.g. molecules) the prediction of nodes poorly
guides the prediction of the structure:

And hundreds
more !

And the good dynamic does not occur.

23

Feature Diffusion trick

We ask the model to predict the features of a nodes + the features of
its neighbors, formally:

F 7→ [F,AF]

24

Effect of Feature Diffusion

0 2 4 6 8 10 12
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

 (t
es

t s
et

)

loss features
loss mask
loss structure

Figure 5: Without Feature Diffusion.

0 2 4 6 8 10 12
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

es
 (t

es
t s

et
) loss features

loss mask
loss structure

Figure 6: With Feature Diffusion.

Feature diffusion also helps the OT solver converge faster!

25

Thank you for your softmax(QKT)V !

Figure 7: Any2Graph performing an Img2Graph task.

26

Effect the hyperparameters: M

M is the maximum number of nodes the model can use.

10 12 14 16 18 20 25
10

11

12

13

14
A

ct
iv

e
 N

o
d
e
s

0.0

0.1

0.2

0.3

0.4

0.5

E
d
it

 D
is

ta
n
ce

Figure 8: Effect of M.

27

Effect the hyperparameters: α

α = [αh, αF, αA] are the weights balancing the terms of the loss.

h = 1

F = 1

A = 1

0 1 2 3 4

Figure 9: Effect of α on the performances (grid search on the simplex).

28

Effect the hyperparameters: α

Setting αA too high prevents the good dynamic!

0 1 2 3 4 5 6 7 8 9 10
Epochs

0.0

0.5

1.0

Lo
ss

es
 (t

es
t s

et
)

loss features
loss mask
loss structure

Figure 10: α = [10, 1, 1].

0 1 2 3 4 5 6 7 8 9 10
Epochs

0.0

0.5

1.0

Lo
ss

es
 (t

es
t s

et
)

loss features
loss mask
loss structure

Figure 11: α = [1, 1, 1].

29

A toy example

A target graph , g = (F,A) where

F =
(
f1
f2

)
;A =

(
0 1
1 0

)

For a = h = 1 the prediction is perfect L(ŷ1,1,P3(g)) = 0

ĥ =

11
0

 ; F̂ =

f1f2
f2

 ; Â =

0 1 0
1 0 0
0 0 0



30

A toy example

A target graph , g = (F,A) where

F =
(
f1
f2

)
;A =

(
0 1
1 0

)

For a = h = 0 the prediction is perfect L(ŷ0,0,P(g)) = 0

ĥ =

10
1

 ; F̂ =

f1f2
f2

 ; Â =

0 0 1
0 0 0
1 0 0



31

A toy example

We can plot the loss landscape

0.0 0.5 1.0
a

0.0

0.5

1.0

h

0.0

0.2

0.4

0.6

Figure 12: ℓ(a,h) = L(ŷa,h,P(g))

0.0 0.5 1.0
a

0.0

0.5

1.0

h

0

1

Figure 13: ℓ(a,h) = ED(P−1(ŷa,h), g)

32

Computing the loss

Recall the expression of the loss:

min
T∈πM

M∑
i,k=1

Ti,kLh(ĥi,hk)+
M∑

i,k=1

Ti,kLF(F̂i, Fk)hk+
M∑

i,j,k,l=1

Ti,kTj,lLA(Âi,j,Ak,l)hkhl

The inner optimization problem writes

min
T∈πM

〈T,U〉+ 〈T, L⊗ T〉

For Ui,k = ℓh(ĥi,hk) + ℓF(̂fi, fk)hk
and (L⊗ T)i,k =

∑
j,l Tj,lℓA(Âi,j,Ak,l)hkhl

33

Computing the loss

Conditionnal Gradient solver:

T(k+1) = min
T∈πM

〈T,C(k)〉

• Each step is a standard OT problem!
• With cost C(k) = U+ L⊗ T(k)

• We provide a factorisation for fast computation of L⊗ T(k)

33

	Supervised Graph Prediction
	Graph Representation
	PMFGW Loss
	Architecture
	Applying the framework

