

Any2Graph: End-To-End Supervised Graph Prediction With An Optimal Transport Loss

Paul KRZAKALA, LTCI (Télécom Paris) & CMAP (Polytechnique) &

J. Yang R. Flamary F. d'Alché-Buc C. Laclau M. Labeau

[Supervised Graph Prediction](#page-1-0)

Graphs as output

Goal: from input $x \in \mathcal{X}$ learn to predict graph $g \in \mathbf{g}$. Naive approach: Represent graph *g* by adjacency matrix *A ∈* [0*,* 1] *m×m* Minimize:

$$
\min_{\theta} \frac{1}{n} \sum_{k=1}^n ||f_{\theta}(x_k) - A_k||_2^2
$$

With some neural net.

Graph Prediction: challenges

Our framework needs to be graph isomorphism invariant!

Graph Prediction: challenges

Our framework needs to deal with graphs of arbitrary sizes!

[Graph Representation](#page-7-0)

Classical representation of graph of size *m* with features of dimension *d*:

We pad all graph to have same size *M*:

Example for $M = 3$:

Example for $M = 3$:

Example for $M = 3$:

Example for $M = 3$:

Input

 $\mathbf x$

Example for $M = 3$:

$$
\hat{\mathbf{h}} \qquad \hat{\mathbf{A}} \\
\mathbf{x} \qquad \xrightarrow{\qquad f_{\theta}} \qquad \begin{pmatrix} 0.8 \\ 0.9 \\ 0.1 \end{pmatrix} \begin{pmatrix} 0 & 0.9 & 0.1 \\ 0.9 & 0 & 0.1 \\ 0.2 & 0.1 & 0 \end{pmatrix}
$$

$$
\begin{pmatrix}\n1 \\
1 \\
0\n\end{pmatrix}\n\begin{pmatrix}\n0 & 1 & - \\
1 & 0 & - \\
- & - & -\n\end{pmatrix}\n\begin{pmatrix}\n0 & 1 \\
1 & 0\n\end{pmatrix}\n\begin{pmatrix}\n0 & 1 \\
1 & 0\n\end{pmatrix}\n\begin{pmatrix}\n0 & 1 \\
- & - & \n\end{pmatrix}
$$

Example for $M = 3$:

$$
\mathbf{x} \longrightarrow \begin{pmatrix} \hat{\mathbf{h}} & \hat{\mathbf{A}} \\ \mathbf{0.9} & \begin{pmatrix} 0.8 \\ 0.9 \end{pmatrix} & \begin{pmatrix} 0 & 0.9 & 0.1 \\ 0.9 & 0 & 0.1 \\ 0.2 & 0.1 & 0 \end{pmatrix} \\ \mathcal{L}(f_{\theta}(x), \mathcal{P}(y)) & \begin{pmatrix} 0 & 1 & - \\ 1 & 0 & - \\ 0 & - & - \end{pmatrix} \longleftarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \longleftarrow
$$

Example for $M = 3$:

$$
\mathbf{x} \longrightarrow \begin{pmatrix} 0.8 \\ 0.9 \\ 0.9 \end{pmatrix} \begin{pmatrix} 0 & 0.9 & 0.1 \\ 0.9 & 0 & 0.1 \\ 0.2 & 0.1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

Our loss

$$
\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & - \\ 1 & 0 & - \\ - & - & - \end{pmatrix} \longleftarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \longleftarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

Example for $M = 3$:

Example for $M = 3$:

[PMFGW Loss](#page-19-0)

We need a loss $\mathcal{L}(\hat{y}, y)$ to compare predicted triplet $\hat{y} = (\hat{h}, \hat{F}, \hat{A})$ and target triplet $y = (h, F, A)$.

Requirements:

- Differentiable
- Permutation Invariant
- Efficient computation

• Mémoli introduce Gromov-Wasserstein (GW) distance to compare mm-spaces [1]

$$
\min_{\pi \in \Pi(\mu_X, \mu_Y)} \int_{\mathcal{X} \times \mathcal{Y}} \int_{\mathcal{X} \times \mathcal{Y}} \ell(d_{\mathcal{X}}(x, x'), d_{\mathcal{Y}}(y, y')) d\pi(x, y) d\pi(x', y')
$$

where $\Pi(\mu_X, \mu_Y)$ is the set of transport plan

$$
\Pi(\mu_X, \mu_Y) = \{ \pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \mid \pi_{\mathcal{X}} = \mu_X, \pi_{\mathcal{Y}} = \mu_{\mathcal{Y}} \}
$$

OT at the rescue! A brief history.

- Mémoli introduce Gromov-Wasserstein (GW) distance to compare mm-spaces [1]
- Peyré et al. applied **GW** to compare **graphs**. [2]

$$
\min_{\mathsf{T} \in \pi_{n,m}} \sum_{i,j=1}^n \sum_{k,l=1}^m T_{i,k} T_{j,l} \ell(\hat{A}_{i,j}, A_{k,l})
$$

where $\pi_{n,m}$ is the set of discrete transport plan

$$
\pi_{n,m} = \{ \mathbf{T} \in [0,1]^{n \times m} \mid \sum_{i} T_{i,j} = \sum_{j} T_{i,j} = 1 \}
$$

OT at the rescue! A brief history.

- Mémoli introduce **Gromov-Wasserstein (GW)** distance to compare mm-spaces [1]
- Peyré et al. applied GW to compare graphs. [2]
- Vayer et al. introduce FGW to compare labeled graphs [3]

$$
\min_{\mathsf{T}\in\pi_{n,m}} \sum_{i=1}^n \sum_{k=1}^m T_{i,k} \ell_F(\hat{F}_i, F_k) + \sum_{i,j=1}^n \sum_{k,l=1}^m T_{i,k} T_{j,l} \ell_A(\hat{A}_{i,j}, A_{k,l})
$$

where $\pi_{n,m}$ is the set of discrete transport plan

$$
\pi_{n,m} = \{ \mathbf{T} \in [0,1]^{n \times m} \mid \sum_{i} T_{i,j} = \sum_{j} T_{i,j} = 1 \}
$$

OT at the rescue! A brief history.

- Mémoli introduce Gromov-Wasserstein (GW) distance to compare mm-spaces [1]
- Peyré et al. applied **GW** to compare **graphs**. [2]
- Vayer et al. introduce FGW to compare labeled graphs [3]
- \cdot Our work introduce the PMFGW to compare predicted triplet (ˆh*,* ˆF*,* Aˆ) and padded target (h*,* F*,* A)

$$
\min_{T \in \pi_M} \sum_{i,k=1}^M T_{i,k} \ell_h(\hat{h}_i, h_k) + \sum_{i,k=1}^M T_{i,k} \ell_F(\hat{F}_i, F_k) h_i + \sum_{i,j,k,l=1}^M T_{i,k} T_{j,l} \ell_A(\hat{A}_{i,j}, A_{k,l}) h_i h_j
$$

$$
\pi_M = \{ \mathbf{T} \in [0, 1]^{M \times M} \mid \sum_i T_{i,j} = \sum_j T_{i,j} = 1 \}
$$

[Architecture](#page-25-0)

- \cdot The <code>encoder</code> extract a set of features $\mathsf{x} \to (\mathsf{V}_1, ..., \mathsf{V}_k) \in \mathbb{R}^{k \times d}$
- The **transformer** translate them into M nodes embedding (Z¹ *, ...,* Z*M*) *→∈* R *M×d*
- The decoder produce the graph following

$$
\hat{h}_i = \sigma(\text{MLP}_m(\mathbf{z}_i)) \qquad \forall i \in \{1, ..., M\}
$$
\n
$$
\hat{F}_i = \text{MLP}_f(\mathbf{z}_i) \qquad \forall i \in \{1, ..., M\}
$$
\n
$$
\hat{A}_{i,j} = \sigma(\text{MLP}_s(\mathbf{z}_i + \mathbf{z}_j)) \qquad \forall i, j \in \{1, ..., M\}^2
$$

Philosophy of the encoder

- Architecture adapts to input modality
- Can leverage pretrained models
- Must extract a list of features. Avoid vector bottleneck.

Encoder (text input)

Encoder (graph input)

Encoder (image input)

[Applying the framework](#page-31-0)

Prediction performances

Figure 4: Qualitative comparison of Any2Graph (ours) and Relationformer.

Table 1: Prediction performances measured with (test) edit distance.

Training Dynamics

... after 5 epochs

Number of nodes \checkmark Nodes features \checkmark 20

... after 100 epochs

Number of nodes \checkmark Nodes features \checkmark Structure \checkmark

Decomposing the loss

For some datasets (e.g. molecules) the prediction of nodes poorly guides the prediction of the structure:

And the good dynamic does not occur.

Feature Diffusion trick

We ask the model to predict the features of a nodes + the features of its neighbors, formally:

Effect of Feature Diffusion

Figure 5: Without Feature Diffusion.

Figure 6: With Feature Diffusion.

Feature diffusion also helps the OT solver converge faster!

Thank you for your softmax(*QK^T*)*V* !

Figure 7: Any2Graph performing an Img2Graph task.

M is the maximum number of nodes the model can use.

Figure 8: Effect of *M*.

Effect the hyperparameters: *α*

 $\alpha = [\alpha_h, \alpha_F, \alpha_A]$ are the weights balancing the terms of the loss.

Figure 9: Effect of α on the performances (grid search on the simplex).

Setting $\alpha_{\rm A}$ too high prevents the good dynamic!

Figure 10: $\alpha = [10, 1, 1]$.

Figure 11: $\alpha = [1, 1, 1]$.

A target graph, $q = (F, A)$ where

$$
F = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}; A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

For $a = h = 1$ the prediction is perfect $\mathcal{L}(\hat{y}_{1,1}, \mathcal{P}_3(g)) = 0$

$$
\hat{\mathsf{h}} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}; \hat{\mathsf{F}} = \begin{pmatrix} \mathsf{f}_1 \\ \mathsf{f}_2 \\ \mathsf{f}_2 \end{pmatrix}; \hat{\mathsf{A}} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

A target graph, $q = (F, A)$ where

$$
F = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}; A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

For $a = h = 0$ the prediction is perfect $\mathcal{L}(\hat{y}_{0,0}, \mathcal{P}(g)) = 0$

$$
\hat{\mathsf{h}} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}; \hat{\mathsf{F}} = \begin{pmatrix} \mathsf{f}_1 \\ \mathsf{f}_2 \\ \mathsf{f}_2 \end{pmatrix}; \hat{\mathsf{A}} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}
$$

We can plot the loss landscape

 $Figure 12: \ell(a, h) = \mathcal{L}(\hat{y}_{a,h}, \mathcal{P}(g))$

 $\text{Figure 13: } \ell(a, h) = \text{ED}(\mathcal{P}^{-1}(\hat{y}_{a, h}), g)$

Recall the expression of the loss:

$$
\min_{T \in \pi_M} \sum_{i,k=1}^M T_{i,k} \mathcal{L}_h(\hat{h}_i, h_k) + \sum_{i,k=1}^M T_{i,k} \mathcal{L}_F(\hat{F}_i, F_k) h_k + \sum_{i,j,k,l=1}^M T_{i,k} T_{j,l} \mathcal{L}_A(\hat{A}_{i,j}, A_{k,l}) h_k h_l
$$

The inner optimization problem writes

$$
\min_{T\in\pi_M}\langle T,U\rangle+\langle T,L\otimes T\rangle
$$

 $\mathsf{For}\ \mathsf{U}_{i,k} = \ell_h(\hat{h}_i, h_k) + \ell_F(\hat{f}_i, f_k)h_k$ and $(\mathsf{L}\otimes \mathsf{T})_{i,k}=\sum_{j,l}\mathsf{T}_{j,l}\ell_\mathsf{A}(\hat{\mathsf{A}}_{i,j},\mathsf{A}_{k,l})h_kh_l$ Conditionnal Gradient solver:

$$
T^{(k+1)} = \min_{T \in \pi_M} \langle T, C^{(k)} \rangle
$$

- Each step is a standard OT problem!
- \cdot With cost $C^{(k)} = U + L \otimes T^{(k)}$
- We provide a factorisation for fast computation of L *⊗* T (*k*)