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Our story begins...

Once upon a time in 2013...

• Its a great time to be Yann Lecun!
• Neural Nets are getting deeper!
• Neural Nets are getting better!

Everything is going great for Deep Learning! Until...

min{||η|| / g(x+ η) ̸= g(x)} ? (1)
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Strange properties

The very existence of adversarial examples is strange but they also
exhibit strange properties:

• Omnipresence (across architecture, datatype, instances)
• High Confidence error
• Transferability (black box attack)
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In this presentation

I. Definitions

II. Attacks & Defences

III. Origins of adversarial examples
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I. Definitions



Notations

Setting = multiclass classification: input space X , K classes

We consider deep neural nets

f : X → ΣK

and the associated classifier g : X → [1, K]

g(x) = argmax
i∈K

[f(x)]i
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Definition of an adversarial example

Assuming k is the true class of x and g(x) = k

Robustness radius:

ϵ = min{||η|| / g(x+ η) ̸= k} (2)

Bounded adversarial attack:

x′ = argmin
||x′−x||≤ϵ

[f(x)]k (3)
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2D representation
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Adversarial Robustness

Classification error:

Rstd = E(1[g(x) ̸= k]) (4)

Adversarial error:

Rrob = E( max
||η||≤ϵ

1[g(x+ η) ̸= k]) (5)
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The scale of the problem

Consider images in [0, 1]3xNxN, ex: ImageNet.

For a typical choice ||η||∞ ≤ ϵ = 4
255 or ||η||2 ≤ ϵ = 0.5

Rstd ≪ Rrob (6)
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II. Attacks & Defences



Definitions

Attacks = solvers for

A(g, x, k, || · ||, ϵ) ≈ argmin
||x−x′||≤ϵ

[f(x′)]k (7)

→ for clarity we simply denote A(x).

Defence = method (architecture, learning algorithm...) to minimize

min
g∈H

Rrob(g) = min
g∈H

E( max
||η||≤ϵ

1[g(x+ η) ̸= k]) (8)

→ this is a saddle point problem.
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Here comes trouble...

Rrob can only be estimated given an attack

Rrob ≈ E(1[g(A(x) ̸= k]) = RA
rob (9)

Actually Rrob ≤ RA
rob

This can give a ’false sense of security’
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The Attack/Defence arm race
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The Attack/Defence arm race
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An example of attack

→ Consider binary classification:

g(x) = 1 ⇐⇒ f(x) > 0

If the true class is 1, the adversarial attack amount to compute

min
||η||≤ϵ

f(x+ η)

Using the linear approximation f(x+ η) ≈ f(x) + ⟨∇xf(x), η⟩

Thus

η∗ ≈ min
||η||≤ϵ

⟨∇xf(x), η⟩

For L2: η∗ = −ϵ ∇xf(x)
||∇xf(x)||

For L∞: η∗ = −ϵsign(∇xf(x)) 21



Stronger attacks

More generally if the loss the networks tries to minimize is

ℓ(f(x), y)

An attack can be computed by maximizing

max
||η||≤ϵ

ℓ(f(x), y)

Typically using n steps of projected gradient descent (PGD-n).
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An example of defence

Recall that the goal of a defence is to minimize:

Rrob(g) = E( max
||η||≤ϵ

1[g(x+ η) ̸= k]) (10)

We can apply the classical convex + empirical relaxations + denote θ

the parameters of the model

Lrob(θ, x1, ...xN) =
1
N

N∑
i=1

max
||x′i−xi||≤ϵ

ℓ(fθ(x′i), yi) (11)

In comparison the standard loss is

Lstd(θ, x1, ...xN) =
1
N

N∑
i=1

ℓ(fθ(xi), yi) (12)
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Adversarial training

Under mild conditions

∇θLrob(θ, x1, ...xN) = ∇θLstd(θ, x′1, ...x′N) (13)

where x′i = argmax
||x′i−xi||≤ϵ

ℓ(fθ(x′i), yi)

→ Standard Training + feed the network with adversarial attacks

→ This can be seen as a form of ”active” data augmentation
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Adversarial training

Forward

Backward

Figure 1: Standard Training
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Backward
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Backward

Forward

Backward

Figure 2: Adversarial Training
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Limitations

Limitations of adversarial training

• Typically x10 to x100 more expensive
• Weak adversarial attack at test time→ vulnerability to strong
attack at test time

• Trade-off std vs robust accuracy
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III. Origins of adversarial
examples



Explanation 1: The divine punishment
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Explanation 1: The divine punishment
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Explanation 2: Linearity

Let fθ : Rd → R be a linear model, i.e. fθ(x) = ⟨θ, x⟩.

Then

max
||η||p≤ϵ

|f(x+ η)− f(x)| = ϵ||θ||q (14)

where q is the dual of p i.e. 1
p + 1

q = 1.

For instance

• p = ∞ =⇒ q = 1
• p = 2 =⇒ q = 2

Deep learning =⇒ d very large (image net: 256× 256× 3 = 196608)

=⇒ ||θ||q very large !
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Explanation 2: Linearity

Notes:

• Link with explanation 1: no dimentionnality reduction in deep
learning

• In high dimension ||x||q and ||x||q′ can be very different hence
the vulnerability to specific perturbations
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Explanation 3: data manifold

Standard representation of the data d dimensional data.
For d = 2:
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Explanation 3: data manifold

High dimensional data tend to lie on a m dimensional manifold.
Typically m≪ d. For m = 1, d = 2:

Data Manifold
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Explanation 3: data manifold

Hypothesis: the decision boundary is too close to the data manifold
(the network is lazy).

Data Manifold

Decision Boundary
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Explanation 3: data manifold

Hypothesis: Adversarial attacks are orthogonal to the data manifold

Data Manifold

Decision Boundary
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Explanation 4: non-robust features

”Adversarial Examples are not bugs, they are features”
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Testing explanation 4:
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Testing explanation 4:
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Non-robust features

Conclusions:

• There exist non-robust (in the human sense) but statistically
useful features

• This may explain transferability of adversarial examples
• This may explain why the trade-off between robustness and
accuracy

• This may not explain all adversarial examples

Data Manifold

Decision Boundary

"Off Manifold
attack" "On Manifold

attack"
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Takeaway on the origins of adversarial examples

• Adversarial examples arise from high dimension of the data
(more than from the network itself)

• The definition of a ”small perturbation” is ill-posed, there is a
misalignment between ”small for a human” and ”small for a
model”

• There are different phenomenon at play
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